
THREAD-BASED, REGION-BASED MEMORY MANAGEMENT

INTRODUCTION

Region-based memory management divides the heap into fixed-sized 
regions such that partial garbage collection (GC) need only be done on 
certain parts of the heap. This offers the flexibility of being able to 
allocate only on certain parts of the heap. By allocating only in regions 
owned by a thread, and subsequently collecting only in those regions 
(Figure 1), we aim to avoid long system-pause times caused by a stop-
the-world approach stopping all mutator threads while GC is being 
performed. 

EXPERIMENTAL SETUP

• Memory management operations and relevant information were
captured into trace files by instrumenting the Java Virtual Machine
(JVM) (Figure 3).

• The GC simulator takes a trace file as input and outputs a log file that
contains statistics on the benchmark and performance of the GC
algorithm.

• Benchmarked with DaCapo 9.12 and SPECjvm2008.

• Only benchmarks that triggered at least one GC were considered
(Table 1).

Tristan Basa, Gerhard Dueck, Kenneth Kent
University of New Brunswick, IBM Canada

Faculty of Computer Science

tbasa@unb.ca, gdueck@unb.ca, ken@unb.ca 

CONCLUSIONd

THREAD-BASED SOLUTION

• Region ownership — assign regions to threads.

• Allocate only in regions that were assigned to the allocating thread.

• GC is done only on regions of the chosen thread so that other
threads can continue execution.

• Other threads that may have to be stopped during a GC can be
determined via escaping objects.

• Escaping objects are objects that have pointers from objects in
regions that belong to other threads (Figure 2).

• Escaping objects are the basis for thread relationships.

EXPERIMENTAL RESULTS

When collection is triggered, the chosen thread for GC could potentially 
stop at most the threads that are related to it. Table 1 shows the related 
threads after the first GC.

Table 1. Related threads and percentage of total threads. 

Figure 3. Experimental Setup.

Figure 1. Thread-based, region-based memory management.

Figure 2. Object 3 escapes to thread B.

Results show that with thread-based, region-based memory management,

on average, about 62% of the threads can continue executing without

having to stop when collection occurs. This can potentially avoid long

system pause times.


